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Abstract. We examine the question of whether or not the non-periodic vari-
ations in solar activity are caused by a white-noise random process. ‘l’he IIurst
exponent, which characterizes the persistence of a time series, is evaluated for the
series of 14L’ data for the time interval from about 6000 IIC to 1950 AD. We find a
constant Hurst exponent, suggesting that solar activity in the frequency range of
from 100 to 3000 years inclucles an important continuum component in addition
to the well known periodic variations. l’he  value we calculate, H % 0.8, is signif-
icantly larger  than the value of 0.5 that would correspond to variations produced
by white noise process. This value is in good agreement with the results for the
monthly sunspot data reported elsewhere, indicating that the physics that pro-
duces the continuum is a correlated random process and that it is the same type
of process over a wide range of time interval lengths.

A Introduct ion

Early studies of solar activity focusccl on the search for pcrioclicitics. The
fundamental discovery of the 1 l-year cycle  by %hwabc followed by the discov-
ery of the secular Gleissbcrg  modulation and by the modern spectral findings
in studies of the radiocarbon clata  (Damon and Sonett,  1989), showed that
the spectrum of solar activity is cornposccl  of a number of basic frequencies
superposed on a background continuum. ‘l’his background continuum was

at first assumecl  to be determined by short term variations with a random
distribution (Vitinskii,  1976). However the rcdiscovcx-y of the Grand Minima
of solar activity (Eddy, 197S) lccl to a re-examination of the question of the
nature of the non- periodic part of the variations of the sun’s activity. IIere



wc address the qucsticm  of whether or not the IIol)-pruiodic  continuum varia-
tions arc produced by a white noise random process. In a time series, white
l~oisc  is a process in which tl]c  amplituclm  of tl]c  variations at diffcrc]lt  times
arc inclcpcndent  of onc another. Tl)e  test for indcpcndcncc  and scarcll for
correlations in a time series can bc carried out by usc of a si]nplc analytical
tool, the calculation of the IIurst  exponent. This exponent clcscribes  the co-
hcrencc or pcrsistcmcc in a long time series. It was dcvc]opcd  in the context

of some problems in hydrology and has bcwn widely used in that field (see
Mandclbrot  and Wall is, 1969; Fedcr, 1988 for reviews). It was first USCC1 in
solar }>hysics  when it was applied to a series of monthly sunspot numbers by

Manclelbrot  and Wallis  (1969). They found that continuum variation of the
sunspot numbers in the time interval range of from 1 to 200 years was not
random in that it had a llurst  exponent significantly larger than 1/2. In this
paper we investigate solar activity persistence for time intervals from 100 to
3000 years. Wc find the Ilurst  exponent for solar activity using the series of
14C data (Stuiver  and Pearson, 19S6) as a proxy.

A Definition of the Hurst exponent

The concept of the Hurst exponent is most easily understood by first c o n -
sidering one- dimensional Brownian motion. We can ask what the position
of a particle will be after many steps if, at each step, the displacement is
indcpcndcnt  of the displacement of the particle” at any other step. In Brown-
ian motion the step lengths arc given by a Gaussian probability distribution.
Then, as is well known, the particles mean-squared distance from its starting
point will increase as the square root of the time, If we plotted the “mean-
squared distance from the starting point in time t “ versus the “time interval
t “ we would get a WC1l defined curve showing that relationship. ‘1’hc rela-
tionship is easier to visualize if wc plot the logarithms of the quantities since
then we would frncl  that the slope of the line, i.e. the exponent in the relation
of distance versus time, is 1/2. Brownian motion is a random process with
IIurst exponent equal to 1 /2.

The concept of 13rownian  motion may be generalized by assuming that
the step lengths arc dependent on one another, i.e. correlated. This was
done in a series of papers by Mandelbrot  and co-workers (see Feder, 1988),
in which they discussed the case in which the value of a random function at
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tirnc t dc])cndcd  011 a l l  previous il]crcmlents  at earlier ti]lles  of all ordinary
Gaussian random process with zero average and unit variallcc. [Jndcr these
circumstances they showed that, after a large number  of steps, the “mcan-
squarcd distance from the stating point in time t,’) would incrcasc  as some
power 11 of the time. ‘1’hc power would  depend on the time correlations, i.e.,
11OW each ncw step dcpcndccl  on all previous steps. Again if the logarithms
of the qua.ntitics  where plottccl, the power in the relation bctwccn  distance.
and time woLdd bc given by the slope, that is, by the IIurst  exponent 11. A
IIurst exponent greater than 1/2 indicates that the process is proceeding in
such a way that, if in the past we have hacl a J]ositivc  incrcmcnt,  then in the
future we can expect on average an incrcasc. A I]urst  exponent lCSS than

1/2 conversely means that if we have had an increase in the past, then on
average we can expect a decease in the future<

The situation is easily imaginccl  by considering gamblers in J,as Vegas.
There are three kinds of gamblers. The first kinc] is an optimist ancl thinks
if hc has had a run of good luck it will continue because he is on a roll. He
is betting that the game is set up with a IIurst exponent greater than I /2.
The second gambler is also an optimist and thinks if he has been losing it
will turn around because it has to come out to zero eventually. Hc is betting
the Hurst exponent is less than 1/2. q’he third type believes to himself to
be rational and figures the game is ‘set up like Drownian  motion (i.e.  it is a
“even game” ) and hc had better not gamble at all because he is as likely to
10SC as to win on the next step.

The IIurst exponent is linearly related to the exponent of the power spec-
t r u m ,  a = 211 + 1 (Mande]brot,  1977).  For example ,  t}le  value 11 = 1/2
corresponds to a time series having a -2 power spectrum; the Kolmogorov
spectrum for the homogeneous turbulence appears from data with H = 1/3
corresponding to a = 5/3, ~’bus, in principle the IIurst exponent can be
found by standard Fourier analysis, lIowcver  in practice (for most geophys-
ical, space physics, and astronomical data) we deal with short ancl sparse
records. This makes the application of Fourier transform difficult. It is
very popular to use a substitution for the l’ouricr  analysis; the so called the
method of maximal entropy (M F, M). MEM is good for finding discrete lines
in the spectrum, but it was not dmigncd  for handling the continuous part of
spectrum. The IIurst methocl  was designed to bc a good tool for character-
izing  the continuous part of the spectra. In contrast to the power spectral
exponent, the Hurst exponent is confined to the unit interval, O < 11 < 1,
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and has clear statistical meaning: it defines a value and sig[] of the correlation
between cxwnts in tllc scqucn]cc presented by all observed tilne series.

A The Hurst Exponent for “C Data

The original tree-ring high-precision 14C data for dcndrohronologically  clatcxl

20 year tree-rings intervals were taken from the compilation given  in Stuivcr
and Pearson (1986). l’hc period covered in our study is 7720 years, i.e.
386 data points. q’hc cosmic rays responsible for the production of 14C arc
modulated by the solar wind ancl Earth’s rnagnctic fields. The geomagnetic
modulation can be approximated by a sinusoidal curve with a perioc]  of about
11, 000 years (Damon and Linick,  1986; Damon, Chcng  and Linick, 1989).
This modulation was removccl  from the data by subtracting the sinusoidal
curve from the original data. The remaining variations have been modulated
by the solar wind throughout the hcliosphere  and reflect solar activity.

The method for the determination of the IIurst exponent from the obser-
vation of a time series has been developed by Mandclbrot  and Wallis (1969).
The method relies on the fact that, comparec]  to a Brownian particle, the
excursion of a particles position from its starting point will be large (small) if
the Hurst exponent is larger (smaller) than 1/2. This is illustrated in Figure
1 (from Fedex-, 1988) in which we see that the range of values of a parameter
(maximum value minus minimum value) increases as the Hurst exponent in
the generating function increases. Hence, if wc study  the behavior of the
range of values in an observed time series, we can estimate the IIurst ex-
ponent  for the process that produced that time series. Ilerc wc apply this
method to a time series of the 14C data which is usecl as a proxy for solar
activity. Following Mandclbrot  and Wallis (1 969) wc set the following clefi-
nitions  for the 14C record from i = O to -1 = 7’, denoting the data time series
as c(t): ‘I’he accumulated mean value  over a time interval T is,

< c >= ;xlt)l
t=o

The accumulated departure from the mean over  a time interval T i s

~(i, T) = ~[C(u)– < C >].
u=]
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‘J’llc difrcrcncc  bctwccxi  tl]c  Inaxirnun]  a n d  Il)ininmm  val(lcs
latcxl departure in this time inkrval,  i.e. the range,  is givcll

}/(T) = :~fi; ~(t, T) ‘ ::1::} ~(i, T).
.- -—

of the ac.cumu-
by

It is convenient to usc the normalized range 1?/S, where S(r) is t}w empirical
variance over the samctirnc interval. For each ~, the time t can take 7’ – ~ + 1
values, and the average over them will be used to construct the dcpcndcncc
of the normalized range on ~. The slope of the log-log plot of these quantities
will give the IIurst exponent.

Figure 2 shows our results for the “C record. ‘1’hc values of ~ plotted were

chosen to be equally spaced on the log-log plot. For ~ = 1,1?(1) = S(1) = O,
for T = 2, R./S = 2 in every case. So the starting point for the analysis is
T = 3. We will normally  assume that  T ~ 5. The  p lo t t ed  po in t s  a rc  the
averages of the values of log R/S taken for each interval of length ~. The
slope of the line along which the points lie is very different from 1/2; which
is the slope of the dashed line given in F’igurc 2. The slope of the line which
wc fit to the data using the least squares method is

H = 0.84 * 02,

This indicates a high clegrcc of persistence in the variations of solar activity.
‘1’hc  departure of the data from a straight line at high values of 7 may bc
duc to sampling effects and should not be considered indicative of a change
in Hurst exponent for these longer term variations. ‘1’hc question of whether
the exponent changes for ~ larger than 3,000 years needs to be lookccl into
using a data set that covers a longer period of time.

In fitting the data to a straight line to determine the IIurst exponent, not
all the points should be considered as being of equal accuracy. When T i s
small compared with the total length of the data record, then the number
of independent determinations of log R/S is relatively large and the average
plotted is a statistically good estimate. IIowevcr,  when ~ is comparable to the
record length the plotted value of log 1{/S  is not as reliable an estimate. Thus
for large values of -r the value determined from our almost 8000 year data set
will depend somewhat on the particular 8000 years chosen for analysis. We
investigated this effect by using two clifferent  386 point times series generated
by a random number generator. We found that the values of log R/S for a
given log  T for these two samples were identical except that, at high T t h e



two curves  began to gradually differ frotn  one  wlot,her.  l“or this reason the
three or four points for tllc largest values of ~ should Ilot bc considcrcxl  in
fitting the graphed points to a straight lil]c.

The clata t}lat  we used in this analysis pcr]nits  us to examine the pcr-
sistc,nce  of solar activity variations of duration of about  100 to 3,000 years.
~’he pcrsistcncc  of variations on shorter time scales was investigated by Man-
dc]brot  and Wallis  (] 969) using monthly sunspot number values. We have
repeated their analysis as shown in figure 3. In this frequency range the
points no longer lic on a straight line. Instead the line is distorted bccausc
of the 11 year sunspot cycle, as discussed by Mandclbrot  and Wallis.  The
power in the 11 year cycle is large compared to the power in the continuum
at these frequencies. The important point for this study is that the behavior
of the continuum is still apparent. We have superposed a line with slope
0.86 to compare the pcrsistcmce  of the continuum in the 1 to 100 year range
with that found for the 100 to 3000 year range, From the Figure it is clear
that the persistence of the variations in the higher frequency range of the
continuum shown in Figure 3 is consistent with the persistence in the lower
frequency range.

A D i s c u s s i o n

We have shown that the variations of a well recognized proxy for solar activity
arise from correlated random process. Wc conclucle  that the variations of the
continuum component of solar activity itself are also distributed differently
from simple white noise. Since the line spectrum at these frecluencies  does
not contain much power (Damon ancl Sonctt,  1989) the largest variations can
be expected to arise from the continuum. In particular, the amplitude of the
variations of solar activity that arc expected to occur in a time interval are
large compared to the variations expected from a white  noise process. Wc
have also given evidence that the continuum variations are distributed in the
same way for periods from 1 to 3000 years.

Actually, for a physical system with random behavior the range is ex-
pected to behave differently in three sets of time intervals. Asymptotically,
the range for very long time intervals may bc independent so that R/S will
vary as T1/2, i.e. like a white noise process. For very small intervals R/S may
have some complicated behavior with no statistical meaning. The fact that
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log(R/S)  is lillcarly dcpclldcnt  011 ~ for a large tiulnbcr  of intcrltlcdia.tc  T’s
has a non-trivial nlcallillg. It says that tllc  solar activity in this intcrnlcdi-
atc regime is self-similar. ‘1’hc tilnc-size (the largest intcrva])  in this regime
defines  some characteristic ti]ne (a memory) i]] activity behavior. With the
present data wc could not reach this limit, and can only  state that the solar
activity is strongly persistent throughout the pcriocl  covered by the radio-
carbon data set we used in this study.  We plan to usc a longer  time series of
‘“f~c in an attempt to find  the white noise  limit; if it exists in solar activity,

The physical process by which the sun produces persistent variations in
its activity is as yet unknown; however we can expect the persistence of the
variations to be produced by a persistence in the random variations of the
sol ar dynamo. It was conjuncturccl  that the solar dynamic system has the
nature of a stochastic strange attractor (Ruzrnaikin, 1981; Weiss et al., 1984).
The observed regularities of solar activity eviclcnce  that the attractor is not a
pure random strange attractor such as the well-known Lorenz attractor, it is
rather a coherent strange attractor. Speaking in the language of spectra we
mean the following: The spectra of purely periodic (or quasi periodic) func-
tions are composed of delta functions (lines). In contrast, a purely chaotic
dynamic system has a continuous spectrum with no lines. q’hc observed so-
lar activity spectrum is characterized by some lines, for example the 1/(11
year) line, superimposed on a broad continuum, One may call this type of
spectrum ‘<noisy periodicity”, or “coherent strange attractor”. An example
of a coherent strange attractor is providccl  by clynamic  systems near the ac-
cumulation point of the Feigenba.um  pcriocl-doubling  bifurcations leading to
chaos. There is some evidence that the solar attractor might be of that type
(Feynman  and Gabr ie l ,  1988; Ruzmaikin  et CZL,1992).

Our last remark concerns the role of solar activity persistence in solar-
tcrrestrial  relations, specifically in climate variability. The solar irradiance
has been found to change by a factor of 0.1 % during the last solar cycle. A
c}]angc of irradiancc  of about 0.5?10 is nccdcd  to produce an effect the Earth’s
climate. We have shown here that the time period over which such a change
in solar activity can be expected to occur is significantly shorter than that
which would be expected for variatio]ls  procluced  by a white noise ranclom
(Rrownian type) process.
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Figure Captions.
Fig. 1, ‘1’he  Brownian  motion displacements l~~f (t) cvaluatcxl  with N =

7 0 0  a n d  11}[(0)  = O: (a) ‘1’he o r d i n a r y  llrownian m o t i o n  11 = 1/2, (b)
11 = 0.7, (c) l] = 0.9 (Fedcr,  1988).  ‘J’he  range of values of  a parameter
(maximum value minus minimutn va]uc)  increases as the IIurst exponent in
the generating function incrcascs.

Fig.  2. This Figure shows t}le  almost linear dcpcndcnce of the resealed
range for 14C data, ‘l’he Hurst exponent is found to bc 11 = 0.84 which

evidences in favor of quite strong cohcrcncc  in a long-term behavior of the
solar activity, The dashed line plotted for comparison has the slope 1 /2. ‘1’hc
time intervals ~ are measured in units of 20 years.

Fig,  3. The Hurst exponent for the monthly averaged sunspot numbers
in a period 1748-  1990 is founcl to be in agrccmcnt with the exponent for l?C

H = 0.86* 0.05

The time intervals here are measured in units of one month,
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